| | | (ii) | |) sulphuric acid (1) | 1 | | | |----|-----|------------------|--|--|--------------------------------------|------|--| | | | | - | 4 but give 0 marks for dilute / (aq)) | | | | | | | (iii) | NO_2^+ (1) | | 1 | | | | | (b) | (i) | $Cl_2 \rightarrow 2Cl \bullet / 1$ | $\frac{1}{2}\operatorname{Cl}_2 \to \operatorname{Cl} \bullet \ \ (1)$ | 1 | | | | | | (ii) | $Cl \bullet + C_6H_5CH$ | $I_3 \rightarrow C_6 H_5 CH_2 \bullet + HCl $ (1) | | | | | | | | $C_6H_5CH_2 \bullet + 0$ | $Cl_2 \rightarrow Cl^{\bullet} + C_6H_5CH_2Cl$ (1) | 2 | | | | | | (iii) | | $C_6H_5CCl_3 / C_6H_5 CHCHC_6 H_5 /$ possible answer (1) | 1 | | | | | (c) | (i) | CN adding to double bond i | be ethanal correctly showing curly arrow \mathbf{and} curly arrow \mathbf{n} $\mathbf{C} = \mathbf{O}$ | ing curly arrow and curly arrow from | | | | | | | CH ₃ CH(CN) | -0^{-} | | | | | | | | H ⁺ adding to a | above ion to form product – ignore curly arrows (1) | 3 | | | | | | (ii) | reaction 1 is nucleophilic (1) | | | | | | | | | reaction 2 is electrophilic (1) | | | | | | | | | or accurate idea of why nucleophile / electrophile attacks aldehyde / alkene including polarity | | | | | | | (d) |) (i) | to satisfy market demand for smaller / unsaturated molecules / alkenes (1) | | | | | | | | | | | 1 | | | | | | (ii) | eg $C_{14}H_{30} \rightarrow$ | 1 | | | | | | | (iii) | oxide(s) of S and their effect eg acid rain | | | | | | | | | not just pollut | ant or toxic (1) | 1 | [15] | | | 2. | (a) | Step Type | | nitration or electrophilic substitution (1) | | | | | | | | ent(s) | $\frac{-}{\text{CHNO}_3 + \text{CH}_2\text{SO}_4 (1)}$ | | | | | | | Step 3: | | | | | | | | | Type of reaction | | reduction or amination or hydrogenation (1) | | | | | | | Reag | ent(s) | HCl/Fe or Sn or Zn or SnCl ₂ H ₂ /Ni or Cu or Pt or Pd (1) 4 | | | | | | (b) | HNO | $O_3 + 2H_2SO_4 \rightarrow$ | NO_{2}^{+} (1) + $H_{3}O^{+}$ + 2HSO $_{4}^{-}$ (1) | 2 | | | | | | | | | | [6] | | 1. (a) (i) $C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$ (1) 1 ## 3. (a) Reagents $AlCl_3$ (1) $$C_6H_5CH_2COCl \ \underline{or} \ (C_6H_5CH_2CO)_2O \ (1)$$ Equation for formation of reactive intermediate $$C_6H_5CH_2COCl + AlCl_3 \rightarrow C_6H_5CH_2CO^+$$ (1) AlCl₄ (1) Name of mechanism electrophilic substitution (1) Mechanism (1) $$H$$ $COCH_2C_6H_5$ H $COCH_2C_6H_5$ (1) (b) Type of reaction reduction <u>or</u> hydrogenation (1) Reagent(s) NaBH₄ or LiAlH₄ H_2/Ni or Pt or Pd (1) or Na/EtOH 2 (c) Reagents H₂SO₄ or H₃PO₄ or Al₂O₃ (1) Name of mechanism elimination (1) (d) optical 1 (e) Type of isomerism geometrical or cis-trans (1) Explanation restricted rotation or double bond rigid (1) [15] 8 2 - **4.** (a) (i) 2–methylpropanenitrile (1) - (ii) Reagent KCN (1) Conditions alcoholic/aq (1) (iii) Name of mechanism nucleophilic substitution (1) (b) Reagents $conc HNO_3 (1) conc H_2SO_4 (1)$ Name of mechanism electrophilic substitution (1) Equation $C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$ or $C_6H_6 + NO_2^+ \rightarrow C_6H_5NO_2 + H^+(1)$ 4 | | (c) | electron deficient C or $\ddot{a} + C$ in C_3H_7Br (1) | | | | | | | |----|-----|--|-------|------|--|--|--|--| | | | attracts/attacked by nucleophiles (1) | | | | | | | | | | electron rich/delocalized electrons in C ₆ H ₆ (1) | | | | | | | | | | repels/not attacked by nucleophiles (1) | max 3 | [14] | | | | | | 5. | (a) | (i) nucleophilic addition (1) (ii) 2-hydroxybutanenitrile condone missing hyphen (1) | 1 | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccclccccclcccc$ | 2 | | | | | | | | | | | | | | | | | | (b) | (i) $CH_3CH_2CH_2Br + KCN \rightarrow CH_3CH_2CH_2CN + KBr (1)$ | 1 | | | | | | | | | allow C_3H_7Br allow C_4H_7N | | | | | | | | | | (ii) nucleophilic substitution / SN2 (1) | 1 | | | | | | | | (c) | CN^- or $NC^-(1)$ | | | | | | | | | | lone pair of electrons on C atom (1) | 2 | | | | | | | | (d) | chloromethane or CH ₃ Cl (or Br or I) (1) | | | | | | | | | | AlCl ₃ / FeCl ₃ / AlBr ₃ (as reagent or condition) (1) | | | | | | | | | | anhydrous (ignore reference to temperature) (1) | | | | | | | | | | electrophilic substitution (1) | 4 | [44] | | | | | | | | | | [11] | | | | | | 6. | (a) | | | | | | | | | | | + AlCl ₄ ⁻ (1) | 2 | | | | | | | | (b) | electrophilic substitution (1) | 1 | | | | | | | | (c) | alternative CH ₃ CH ₂ CH ₂ CH ₂ ⁺ or primary (1) less stable or 1 v 2 inductive effects (1) | | | | | | | | | | than $CH_3CH_2CHCH_3$ or secondary (1) | 3 | | | | | | | | (d) | protonation gives CH ₃ CH ₂ CHCH ₃ only (1)
<u>or</u> but–2–ene symmetrical | 1 | | | | | | | | (e) | CH ₃ CH ₂ CHCH ₃ (1) | | | | | | | | | | or Br | 1 | | | | | | [8] - 7. (a) (i) CH₃COCl <u>or</u> (CH₃CO)₂O (1) AlCl₃ (1) - (ii) reduction or hydrogenation (1) - (iii) NaBH₄ <u>or</u> LiAlH₄ <u>or</u> Na/C₂H₅OH <u>or</u> H₂/Ni (1) (<u>or</u> H₂/Ni) - (iv) elimination \underline{or} dehydration (1) H_2SO_4 or H_3PO_4 \underline{or} hot Al_2O_3 (1) 6 4 - (b) (i) poly(phenylethene) or polystyrene (1) - (ii) $CH_3CH_2^+$ or $C_2H_5^+$ (1) $CH_2 = CH_2 + HCl + AlCl_3 \rightarrow CH_3CH_2^+AlCl_4^-$ (1) - (iii) elimination or dehydrogenation (1) [10] #### **8.** (a) *Mechanism* Allow C_3H_7 if structure shown elsewhere penalise HCN splitting if wrong Name of product: 2-hydroxypenta(ne/o)nitrile (1) or 1-cyanobutan-1-ol 5 # (b) Mechanism $$(CH_{3}CH_{2}) - C - CI \longrightarrow CH_{3}CH_{2} - C CH_{$$ Name of organic product: methylpropanoate (1) - (c) (i) $([) CH_3CO(])^+(1)$ - (ii) 4 #### **Notes** (abc) extra curly arrows are penalised - (a) be lenient on position of negative sign on : CN⁻ but arrow must come from 1p - (a/b) C O alone loses M2 but can score M1 for attack on C+, similarly C Cl - (a) allow 2-hydroxypentanonitrile or 2-hydroxypenta(ne)nitrile ... pentylnitrile - (b) in M4, allow extra: Cl⁻ attack on H, showing loss of H⁺ - (c) (i) allow formula in an "equation"(balanced or not) be lenient on the position of the + on the formula - (ii) for M1 the arrow must go to the C or the + on the Cdon't be too harsh about the horseshoe, but + must not be close to the saturated CM3 must be final step not earlier; allow M3 even if structure (M2) is wrong [14] ### Organic points (1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g. (2) Structures penalise sticks (i.e. — C —) <u>once per paper</u> Penalise once per paper $$\begin{array}{c} \underline{allow} \; CH_3- \, or \; -CH_3 \; or \; CH_3 \; or \; CH_3 \\ \\ or \; \; H_3C- \end{array}$$ # 9. Step 1 (a) acylation or electrophilic substitution (1) $A1C1_3$ (1) CH_3CH_2COC1 or $(CH_3CH_2CO)_2O$ (1) Step 2 reduction or hydrogenation (1) NaBH₄ or hiA1H₄ or Na/C₂H₅OH $H_2/N1$ or Pt or Pd (1) Step 3 dehydration or elimination (1) H_2SO_4 or H_3PO_4 or $A1_2O_3$ (1) 7 optical (1) (b) 1 geometrical or cis-trans isomers (1) (c) due to restricted rotation (1) 2 (d) (i) CHBrCH₂CH₃ CH₂ CHBrCH₃ **(1) (1)** electrophilic addition (1) (ii) $C_6H_5 \stackrel{\scriptscriptstyle \perp}{C} H CH_2CH_3$ (1) $C_6H_5CH_2\overset{+}{C}HCH_3$ (1) (iii) both secondary but one is more stable (1) 6 10. dimethylamine (a) 1 nucleophilic substitution (b) M_1 H_3C-NH_2 (c) quaternary ammonium salt (cationic) surfactant / bactericide / detergent / fabric softener or conditioner/ hair conditioner 1 [16] (d) $$H_3C$$ C N H CH_3 (allow CH₃COOH or CH₃COO⁻ NH4⁺) [10] 2 1 4 **11.** (a) Nucleophilic substitution CH₃COO $CH_{3}CH_{2}CH_{2} - CH_{2} CH_{2}$ M1, M2 and M4 for arrows, M3 for structure of cation (Allow M2 alone first, i.e. SN1 formation of carbocation) (Penalise M4 if Br⁻ used to remove H⁺) - (b) Step 1 $CH_3CH_2CH_2CN$ 1 $CH_3CH_2CH_2Br + KCN \rightarrow CH_3CH_2CH_2CN + KBr$ balanced 1 (or CN^-) (or Br^-) (not HCN) 1 - Step 2 $CH_3CH_2CN + 2H_2 \rightarrow CH_3CH_2CH_2CH_2NH_2$ 1 (or 4[H]) - (c) (i) Lone pair (on N) (in correct context) 1 R group increases electron density / donates electrons /pushes electrons / has positive inductive effect 1 - (ii) Any strong acid (but not concentrated) or any amine salt or ammonium salt of a strong acid 1 - $(d) \quad CH_3CH_2N(CH_3)_2 \qquad \qquad 1$ - 12. (a) (i) chloromethane, any halogenomethane (correct formula accepted) (1) aluminium chloride / Fe / FeCl $_3$ /BF $_3$ (1) anhydrous (1) 3 - (ii) electrophilic (1) substitution (1) 2 [12] and other correct products $\label{eq:correct} 3$ penalise C_6H_5 once only (c) (i) reduction / redox (1) only phenylamine, give salt correct with charges omitted, give 2 cation only, give 2 reduction / redox / hydrogenation / addition **not** electrophilic addition (1) 2 (iii) H H OH | | | | H — C — C — C — CN | | | | H H H H (1) addition **not** electrophilic addition (1) [17] **13.** (a) $CHNO_3 + CH_2SO_4$ (1) $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ (1) + H_3O^+ + 2HSO_4^- (1)$ electrophilic substitution (1) (b) reduction <u>or</u> hydrogenation (1) $HC1/Fe \ \underline{or} \ Sn \ \underline{or} \ Zn \ \underline{or} \ Sn \ Cl_2$ $H_2/Ni \ \underline{or} \ Pt \ \underline{or} \ Pd \ \underline{or} \ Cu \ (1)$ (c) $C_6H_5NH_2 + CH_3 COCl (1) \rightarrow C_6H_5NHCOCH_3 + HCl (1)$ or $C_6H_5NH_2 + (CH_3CO)_2O \rightarrow C_6H_5NH COCH_3 + CH_3 COOH$ nucleophilic addition-elemination (1) [16] **14.** (a) lone pair on N (1) donated to H⁺ or proton acceptor (1) 2 7 7 2 (b) lone pair on N less available (1) due to delocatisation (1) 2 5 - (c) (i) nucleophilic substitution (1) - (ii) $(CH_3)_2 NH (1)$ $(CH_3)_3 N (1)$ $(CH_3)_4 N + Br^- (1)$ (iii) quaternary ammonium salt (1) [9] - **15.** (a) (i) $CH_3CN + 4[H] (\underline{or} \ 2H_2) \rightarrow CH_3CH_2NH_2$ (1) - (ii) LiAlH₄ or Na/C₂H₅OH (or H₂/Ni) (1) 2 (b) (nucleophilic) substitution or alkylation (1) Product 1 Product 2 Product 3 $(C_2H_5)_2NH$ $(C_2H_5)_3N$ $(C_2H_5)_4N^+Br^-$ (1) (1) (1) 4 3 (c) $(1) \longrightarrow H \xrightarrow{Br} H_3CH_2NH_3Br^ (1) \longrightarrow CH_3CH_2NH_3Br^ (1) \longrightarrow CH_3CH_2NH_3Br^-$ (d) lone pair on N less available or electron density on N decreased (1) due to delocalisation (1) 2 (e) electron withdrawal by O or CO or delocalisation by CO (1) reduces electron density on N or makes N lone pair less available (1) 2 7 (f) $2C_2H_5NH_2 + CH_3COCl (1) \rightarrow CH_3CONHC_2H_5 + C_2H_5NH_3^+Cl^- (1)$ (nucleopholic) addition – elimination (1) [20] - 16. (a) (i) H+ or proton acceptor (1) $CH_3NH_2 + H_2O \iff CH_3^+NH_3 (+) OH^- (1)$ - (ii) CH₃NH₃Cl or HCl (1) Or any ammonium compound or strong acid name or formula - (iii) extra OH⁻ reacts with CH₃NH₃ or reaction / equilibrium moves to left or ratio salt / base remains almost constant (1) Any 2 5 (b) lone pair (on N accepts H⁺) (1) CH₃ increases electron density (on N) donates / pushes electrons has positive inductive effect (1) (c) nucleophilic substitution (1) $$\frac{C_{2}H_{5}}{CH_{3}} - N + C_{2}H_{5}$$ $$C_{2}H_{5}$$ $$C_{2}H_{5}$$ (1) [9] 17. (a) (i) Equation $C_6H_5CH_2Br + 2NH_3 \rightarrow C_6H_5CH_2NH_2 + NH_4Br$ (1) (1) Type of reaction nucleophilic subsn or alkylation (1) Explanation further substitution occurs (1) o give a mixture of products (1) (ii) reduction <u>or</u> hydrogenation (1) $C_6H_5CN + 4[H] \rightarrow C_6H_5CH_2NH_2 \text{ (1)}$ $\underline{\text{or}} \ 2H_2$ $Na/C_2H_5OH \ \underline{\text{or}} \ LiAlH_4 \ \underline{\text{or}} \ H_2/Ni \ \textbf{(1)}$ only one product formed (1) or avoids further substitution 9 3 2 (b) Weaker base phenylamine (1) Explanation lone pair on N less available or electron density on N lowered (1) due to delocalisation <u>or</u> overlap (1) [12] - **18.** (a) (i) $cHNO_3 + cH_2SO_4$ (1) $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+$ (1) $+ H_3O^+ + 2HSO_4^-$ (1) - (ii) electrophilic substitution (1) 7 (b) Type of reaction reduction (1) not hydrogenation Reagent(s) NaBH₄ or Na/C₂H₅OH (1) <u>not</u> LiAlH4 not H₂/Ni 2 (c) Reagent CH₃COCl or (CH₃CO)₂O (1) Name of mechanism (nucleophilic addition–elimination (1) Mechanism - (c) (i) NaCN or KCN (1) - (ii) Reagent(s) Na/C₂H₅OH or LiAlH₄ or H₂/Ni (1) Type of reaction reduction or hydrogenation (1) Equation $C_6H_{11}CN + 4[H] \rightarrow C_6H_{11}CH_2NH_2$ (1) or $2H_2$ if hydrogenation - (d) Equation $2RNH_2 + CH_3COCl \rightarrow RNHCOCH_3$ (1) $+ RNH_3Cl$ (1) Name of mechanism (nucleophilic) addition-elimination (1) **21.** (a) (i) suitable graphical formula for ethanoic anhydride (1) (ii) (acid) anhydride (1) (b) (i) $\mathbf{F} = \text{ethylamine / aminoethane}$ (1) (ii) reduction **or** hydrogenation **or** addition (ignore reference to mechanism) (1) (c) $CH_3COC1 + CH_3CH_2NH_2 \rightarrow CH_3CONHCH_2CH_3 + HC1$ $CH_3CONHCH_2CH_3$ (1) balanced (1) 2 [6] 6 4 7 1 [20] 22. Lone pair on N or electron density on N (1) (a) more available or electron density increased (1) electron donation or inductive effect (1) 3 3 LiAlH₄ or Na/EtOH or H₂/Ni (1) (b) Reagent(s) Type of reaction reduction or hydrogenation (1) **Equation** $CH_3CN + 4[H] \underline{or} 2H_2 \rightarrow CH_3CH_2NH_2 (1)$ (c) $(C_2H_5)_4N^+Br^-(1)$ quaternary ammonium salt (1) cationic surfactant (1) or fabric softener 3 5 - (d) Name of mechanism addition-elimination (1) - Mechanism (e) $C_2H_5NH_2 + (CH_3CO)_2O \rightarrow C_2H_5NHCOCH_3 + CH_3COOH$ (1) $\underline{\text{or}}\ 2C_2H_5NH_2 + (CH_3CO)_2O \rightarrow C_2H_5NHCOCH_3 + CH_3COO^- {}^+_N H_3C_2H_5$ 1 [15] ## 23. (a) (nucleophilic) addition-elimination; $$(CH_3CH_2 \xrightarrow{M2} C)$$ $$M1$$ $$(CH_3CH_2 \xrightarrow{C} C)$$ $$H C \xrightarrow{N+} H$$ $$(CH_3 \xrightarrow{N+} NH_2)$$ $$Allow C_2H_5 \xrightarrow{O} C$$ $$CH_3CH_2 \xrightarrow{C} C$$ $$H C \xrightarrow{N+} H$$ (M3 for structure) (M4 for 3 arrows and lone pair) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.) $(+on\ C\ of\ C=O\ loses\ M2\ but\ ignore\ \delta+\ if\ correct)$ (Cl removing Ft loses M4) (If MS lost above for wrong C chain, do not penalise same error again here) # (b) $CH_3CH_2COCl + AlCl_3 \rightarrow [CH_3CH_2CO]^+ + AlCl_4^-;$ (penalise wrong alkyl group once at first error) (position of + on electrophile can be on O or C or outside []) (penalise wrong curly arrow in the equation or lone pair on $AlCl_3$) (horseshoe must not extend beyond C2 to C6 but can be smaller) (+ not too close to C1) (penalise M2 if CH₃ chain wrong again but allow M1 and M3) (M3 arrow into hexagon unless Kekule) (M1 arrow from within hexagon to C or to + on C) (allow M3 arrow independent of M2 structure) (don't penalise position of + on C of RCO+) 3 1 5 1 $$AlCl_4^- + H^+ \rightarrow AlCl_3 + HCl;$$ (or can be gained in mechanism); M1 CH3CH2COCl + H2O → CH3CH2COOH + HCl 1 1 (c) (penalise wrong alkyl group once at first error) M2 Mr of CH3CH2COC1 = 92.5 11 (if Mr wrong, penalise M2 only) M3 moles of CH3CH2COCl = 1.48/92.5 = 0.01611 M4 moles NaOH = $2 \times 0.016 = 0.0321$ 1 (allow for \times 2 conseq to wrong no of moles) M5 volume of NaOH = 0.032/0.42 = 0.0762 dm3 or 76.2 cm3 1 (with correct units) (if ×2 missed in M4 lose M5 also) 1 [16] (a) $CH_3COCl + AlCl_3 \rightarrow CH_3 \stackrel{+}{C}O + AlCl_4$ 1 24. equation 1 penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AlCl₃ else ignore Electrophilic_substitution 1 NOT F/C acylation > M1 M3 CH_3 horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure M1 arrow from within hexagon to C or to + on C + must be on C of RCO | 26. | X is CH ₃ CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile Not ethanitrile but contradiciton of name and structure lose marks | | | | | | | | |-----|---|--|---|---------------|-----------------|-----------------------|---|-----| | | Y is CH ₃ CH ₂ NH ₂ or ethylamine or aminoethane or ethanamine | | | | | | 1 | | | | Step 1: reagent condition | | | | | | | 1 | | | Step 2: reagent condition | H ₂
Ni/Pt/Pd | = | Na
ethanol | Zn/Fe/Sn
HCl | Not NaBH ₄ | 1 | | | | | s an amine or aminoalkane or named amine even if incorrect name for Z secondary (only award if amine correct) | | | | | | | | | secondary (only award if amine correct) $\begin{bmatrix} CH_3 \\ - \\ CH_3 CH_2 - N - CH_3 \\ - \\ - \\ CH_3 \end{bmatrix} + (Br^-) + can be on N or outside brackets as shown CH_3$ | | | | | | 1 | | | | nucleophilic substi | | | | | | 1 | [9] | | 27. | (a) Cyclohexane evolves 120 kJ mol ⁻¹ ∴ (expect triene to evole) 360 kJ mol ⁻¹ (1) or 3 × 120 360 – 208 = 152 kJ (1) NOT 150 152 can score first 2 QofL: benzene lower in energy / more (stated) stable (1) Not award if mentions energy required for bond breaking due to delocalisation (1) or explained | | | | | | 4 | | (b) (i) phenylamine weaker (1) if wrong no marks lone pair on N (less available) (1) delocalised into ring (1) or "explained" 3 (ii) addition – elimination (1) structure (1) M3 3 arrows (1) M4 6 - N-phenyl ethanamide (1) - (iii) conc HNO_3 (1) conc H_2SO_4 (1) $HNO_3 + 2H_2SO_4 \rightarrow NO_2 + H_3O^+ + 2HSO_4^-$ (1) 6 (iv) peptide / amide (1) NaOH (aq) (1) 2 HCl conc or dil or neither H₂SO₄ dil NOT conc NOT just H_2O #### **Notes** - (a) $360 \text{ or } 3 \times 120 \text{ or in words } (1);$ - 152 NOT 150 (1); (152 can get first two marks) - **Q** of **L** benzene <u>more</u> stable but not award if ΔH values used to say that more energy is required by benzene for hydrogenation compared with the triene or if benzene is only compared with cyclohexene (1); - delocalisation or explained (1) - (b) (ii) or N-phenylacetamide or acetanilide mechanism: if shown as substitution can only gain M1 if CH₃CO+ formed can only gain M1 lose M4 if Cl⁻ removes H⁺ be lenient with structures for M1 and M2 but must be correct for M3 CO alone loses M2 - (iii) No marks for name of mechanism in this part if conc missing can score one for both acids (or in equation) allow two equations allow $HNO_3 + H_2SO_4 \rightarrow NO^{2+} + HSO_4^- + H_2O$ ignore side chain in mechanism even if wrong arrow for M1 must come from niside hexagon arrow to NO_2^+ must go to N but be lenient over position of + + must not be too near "tetrahedral" Carbon horseshoe from carbons 2-6 but don't be too harsh $\begin{array}{ccc} \hbox{(iv)} & \hbox{reagent allow NaOH} \\ & \hbox{HCl conc or dil or neither} \\ & \hbox{H}_2SO_4 \hbox{ dil or neither but not conc} \\ & \hbox{not just H_2O} \end{array}$ [21]